

A Follow-up to the AMBEATion Project

Dalibor BARRI, Patrik VACULA, Jiri JAKOVENKO, Vladimir JANICEK

STMicroelectronics, CTU-FEE

21 July 2025

Collaboration

Academic: CTU, NTHU, NCU, NTUST, Taiwan Tech

- Taiwan universities
 - National Tsing Hua University (NTHU):
 - Renowned for semiconductor research, AI, and ML
 - National Central University (NCU):
 - Strong in semiconductor technology and EDA
 - National Taiwan University of Science and Technology (NTUST, Taiwan Tech):
 - Focus on practical and applied research in semiconductor design
- European Universities:
 - Czech Technical University (CTU):
 - Leading in electrical engineering, AMS design, and automation

Industry: STMicroelectronics, MicroIP

- STMicroelectronics (STM):
 - Global Leader: One of the world's leading semiconductor companies
 - Expertise: Specializes in electronic components for Smart Systems
- MicroIP:
 - Specialization: Leading Taiwanese company specializing in semiconductor IP and EDA tools
 - Innovation: Known for developing innovative solutions for semiconductor design automation
 - Industry Connections: Strong industry connections that ensure the project's methodologies are robust and commercially viable

Taiwan's Talent Cultivation Ecosystem

TSRI's Proven Model

Work with +50 universities and +600 research groups

Introduction

- Title: Analog Layout Design Automation Project
- Aim: Revolutionize analog-mixed-signal (AMS) integrated circuit (IC) design using machine learning (ML) and artificial intelligence (AI).

Objectives

Objectives:

- Develop tools for automatic constraint generation
- Create abstract generators for AMS IC placement
- Develop a 2D AMS IC auto-placer
- To realize matching by NN
- To respect LDE effects
- Support hierarchical databases
- Create basic routing between topologies and devices

State of the Art

State of the Art

Nowdays results

AMBEATion project

MAGICAL project

ALIGN project...

NLP

MAGICAL

State of the Art

- Nowdays results
 - AMBEATion project
 - MAGICAL project
 - ALIGN project...

Preferred Area	Preferred Connection	Compromise
A = 2 083um ² P2P = 0.295 T = 0.44s	A = 2 196um ² P2P = 0.068 T = 5min	$A = 2 102 \text{um}^2$ P2P = 0.084 T = 4.44s
58.56	49.53	58.23

IC Flow

Specification and Requirements

Define the specifications and requirements of the analog circuit.

Gather all necessary design documents and constraints.

Schematic Design

Create the schematic diagram of the analog circuit.

Perform initial simulations to verify the functionality.

Pre-Layout Simulation

Run detailed simulations to ensure the design meets the specifications.

Make necessary adjustments to the schematic based on simulation results.

Floorplanning

components.

Optimize the layout for performance, area, and power consumption.

Place the individual components (transistors, resistors, capacitors, etc.) on the layout.

Placement

Ensure proper spacing and alignment according to design rules.

Routing

Connect the

interconnects.

capacitance.

Ensure minimal

components with metal

parasitic resistance and

Layout Verification

Perform Design Rule Check (DRC) to ensure the layout adheres to manufacturing constraints.

Conduct Lavout Versus Schematic (LVS) check to ensure the layout matches the schematic.

Post-Layout Simulation

Extract parasitics from the layout.

Run post-layout simulations to verify the performance with parasitics included.

Layout **Optimization**

Make necessary adjustments to the layout based on post-layout simulation results.

Iterate the process of placement, routing, and verification as needed.

Final Verification

Perform final DRC and LVS checks.

Conduct additional checks such as Antenna Check, Electromigration Check, etc.

Tape-Out

Prepare the final layout for manufacturing.

Generate the necessary files (GDSII, OASIS) for fabrication.

Fabrication

Send the design to the foundry for manufacturing.

Monitor the fabrication process and address any issues that arise.

Testing and Validation

Test the fabricated ICs to ensure they meet the design specifications.

Validate the performance and functionality of the ICs.

IC Flow

AMBEATion

Specification and Requirements

Define the specifications and requirements of the analog circuit.

Gather all necessary design documents and constraints.

Schematic Design

Create the schematic diagram of the analog circuit.

Perform initial simulations to verify the functionality.

Pre-Layout Simulation

Run detailed simulations to ensure the design meets the specifications.

Make necessary adjustments to the schematic based on simulation results.

Floorplanning

Plan the lavout of the circuit, considering the placement of major components.

Optimize the layout for performance, area, and power consumption.

Placement

Place the individual components (transistors, resistors, capacitors, etc.) on the layout.

Ensure proper spacing and alignment according to design rules.

Routing

Layout Verification

Connect the components with metal interconnects.

Ensure minimal parasitic resistance and capacitance.

Perform Design Rule Check (DRC) to ensure the lavout adheres to manufacturing constraints.

Conduct Lavout Versus Schematic (LVS) check to ensure the layout matches the schematic.

Post-Layout Simulation

Extract parasitics from the layout.

Run post-layout simulations to verify the performance with parasitics included.

Layout **Optimization**

Make necessary adjustments to the layout based on post-layout simulation results.

Iterate the process of placement, routing, and verification as needed.

Final Verification

Perform final DRC and LVS checks.

Conduct additional checks such as Antenna Check, Electromigration Check, etc.

Tape-Out

Prepare the final layout for manufacturing.

Generate the necessary files (GDSII, OASIS) for fabrication.

Fabrication

Send the design to the foundry for manufacturing.

Monitor the fabrication process and address any issues that arise.

Testing and Validation

Test the fabricated ICs to ensure they meet the design specifications.

Validate the performance and functionality of the ICs.

IC Flow

AMBEATion

Follow-up activities

Specification and Requirements

Define the specifications and requirements of the analog circuit.

Gather all necessary design documents and constraints.

Schematic Design

Create the schematic diagram of the analog circuit.

Perform initial simulations to verify the functionality.

Pre-Layout Simulation

Run detailed simulations to ensure the design meets the specifications.

Make necessary adjustments to the schematic based on simulation results.

Floorplanning

Plan the lavout of the circuit, considering the placement of major components.

Optimize the layout for performance, area, and power consumption.

Placement

Place the individual components (transistors, resistors, capacitors, etc.) on the layout.

Ensure proper spacing and alignment according to design rules.

Routing

Connect the

interconnects.

capacitance.

Ensure minimal

components with metal

parasitic resistance and

Lavout Verification

Perform Design Rule Check (DRC) to ensure the layout adheres to manufacturing constraints.

Conduct Lavout Versus Schematic (LVS) check to ensure the layout matches the schematic.

Post-Layout Simulation

Extract parasitics from the layout.

Run post-layout simulations to verify the performance with parasitics included.

Layout **Optimization**

Make necessary adjustments to the layout based on post-layout simulation results.

Iterate the process of placement, routing, and verification as needed.

Final Verification

Perform final DRC and LVS checks.

Conduct additional checks such as Antenna Check, Electromigration Check, etc.

Tape-Out

Prepare the final layout for manufacturing.

Generate the necessary files (GDSII, OASIS) for fabrication.

Fabrication

Send the design to the foundry for manufacturing.

Monitor the fabrication process and address any issues that arise.

Testing and Validation

Test the fabricated ICs to ensure they meet the design specifications.

Validate the performance and functionality of the ICs.

Placer Classification

(**L0**) Level 0 placers : Abstract generators

(**L1**) Level 1 placers: Regular Structure Placers

(**L2**) Level 2 placers: IP level Placers

(L3) Level 3 placers: Top Level Placers (Floorplaning)

(L4) Level 4 placers: Package Placers

(L5) Level 5 placers: Chip-lets Placers

L0 Placer: Abstract generators

 it means pCell representation (in another word how instances are represented in layout by area – instance area)

L1 Placer: Regular Structure Placers

- Regular and sensitive structure placement (current mirror, differential pair, resistor ladder...)
- Matching is required.
- Logical structure

L2 Placer: IP level Placers

- Placement of the instances on the IP level (it means placement of the instances generated in L1 level and the rest of the instances on that IP level)
- As IP level can be understood OpAmp, ADC, bias, BGP ...

L3 Placer: Top Level Placers – Floorplanning

 Placement of the IPs on the upper level (it means placement BIAS, OpAmp, ADC,... on the dedicated level)

L4 Placer: Package Placers

Optimize pad and solder ball position

L5 Placer: Chip-lets Placers

 Optimize interconnection between chips (through silicon via position, ball position optimization – WLCSP package)

AMBEATion

(**L0**) Level 0 placers : Abstract generators

(**L1**) Level 1 placers: Regular Structure Placers

(**L2**) Level 2 placers: IP level Placers

Follow-up activities

Placer Classification

(L3) Level 3 placers: Top Level Placers (Floorplaning)

(L4) Level 4 placers: Package Placers

(L5) Level 5 placers: Chip-lets Placers

L0 Placer: Abstract generators

 it means pCell representation (in another word how instances are represented in layout by area – instance area)

L1 Placer: Regular Structure Placers

- Regular and sensitive structure placement (current mirror, differential pair, resistor ladder...)
- Matching is required.
- Logical structure

L2 Placer: IP level Placers

- Placement of the instances on the IP level (it means placement of the instances generated in L1 level and the rest of the instances on that IP level)
- As IP level can be understood OpAmp, ADC, bias, BGP ...

L3 Placer: Top Level Placers – Floorplanning

 Placement of the IPs on the upper level (it means placement BIAS, OpAmp, ADC,... on the dedicated level)

L4 Placer: Package Placers

Optimize pad and solder ball position

L5 Placer: Chip-lets Placers

 Optimize interconnection between chips (through silicon via position, ball position optimization – WLCSP package)

SW to be used in the follow up project

Summary

Summary:

Today, it has been presented the key goals, achievements, and ongoing developments of the **AMBEATion** project and its follow up project activities.

It was highlighted how this initiative is transforming analog-mixed-signal (AMS) IC design through advanced machine learning and artificial intelligence techniques.

The comprehensive design flow, placer classification, and strong collaboration between academia and industry were also discussed.

The **follow up activities** are focused on developing:

- new placer started from knowledge given from previous projects (like AMBEATion project is)
- routing procedure to do interconnection for L1, L2 and L3 placement levels
- matching pattern by NN

Thank you

- to EU for supporting to develop AMBEATion project
- to all project partners
- to project Leader (Daniele Jahier Pagliari)

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

