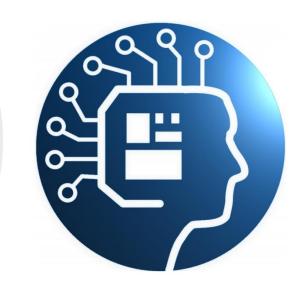
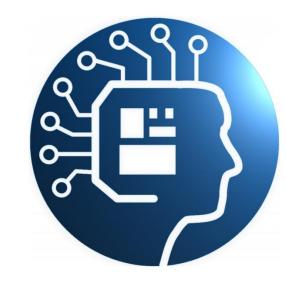
Welcome Note

Daniele Jahier Pagliari, Politecnico di Torino daniele.jahier@polito.it



Meeting Agenda

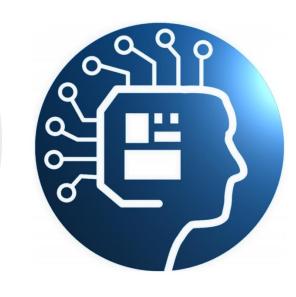


Meeting Agenda

Start Time	Title	Speaker
15:00	Welcome Note – Lessons Learned from the AMBEATion Project	Daniele Jahier Pagliari Politecnico di Torino
15:20	Effective Analog ICs Floorplanning with Relational Graph Neural Networks and Reinforcement Learning	Davide Basso University of Trieste
15:40	Learning to Act like a Pro: Discovering Procedural Models of Expert Workflows for Assistance and Validation	Antonino Furnari University of Catania
16:00	The AI Revolution in ST Design Flow	Michelangelo Grosso ST Microelectronics
16:20	A Modern Solution for Analog/Mixed-Signal Design	Marco Inglardi Synopsys
16:40	A Follow-up to the AMBEATion Project	Dalibor Barri ST Microelectronics

Lessons Learned from the AMBEATion Project

Daniele Jahier Pagliari, Politecnico di Torino daniele.jahier@polito.it

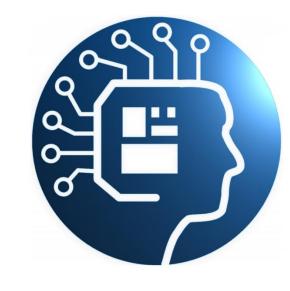


The AMBEATion Project

- Analog/Mixed Signal Back End Design Automation based on Machine Learning and Artificial Intelligence Techniques
- Marie Skłodowska Curie Research and Innovation Staff Exchange Action (MSCA-RISE)
- Sep. 1st 2021 Aug. 31st 2025

AMBEATion's Consortium

Context and Motivation



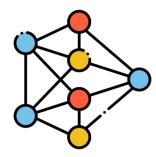
Context and Motivation

- Analog Mixed-Signal (AMS) ICs are pervasive:
 - Internet of Things (IoT), Smart & Autonomous Driving, Active Assisted Living (AAL)
 - Digital blocks → computational tasks
 - Analog blocks

 power conversion, A/D and D/A conversion, actuation, thermal/voltage/current sensing, signal conditioning, etc.

Context and Motivation

- Digital EDA tools have achieved remarkable levels of back-end automation.
- Analog (and thus AMS) back-end, instead, is still mostly done manually by experienced designers.
 - Sensitivity to Well Proximity Effect, Shallow Trench Isolation stress, thermal gradients, mismatch, process variations, etc.
 - More complex constraints: gain, bandwidth, distortion, etc, different for each class of devices.
 - No standard cells...
- Problem studied for decades. What's new?



Question: Can AI and ML help automating AMS BE?

- All and ML have been introduced in the EDA industry since several years:
 - Improve scalability, computational efficiency and QoR in different parts of the digital flow
 - A wide gap still exists within the analog domain [1]
- Some recent initiatives investigated AI/ML for AMS Back-End:
 - US DARPA IDEA Program (ALIGN Project)
 - US NSF
 - Taiwan's Ministry of Science and Technology
 - etc.

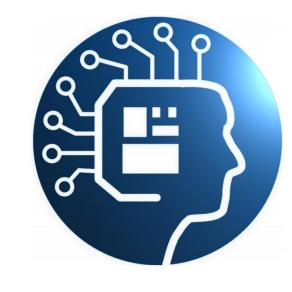
[1] B. Nikolic, "ML for analog design: Good progress, but more to do," in ACM/IEEE MLCAD, 2022

The AMBEATion Project

- Objective: Develop Electronic Design Automation (EDA) methodologies, based on AI/ML to enhance the productivity of AMS physical design
 - Increase designers' productivity → Reduce design costs
 - Mainly targeting the AMS placement phase.
 - Strong focus on training, staff education and knowledge exchange (as per MSCA goals).

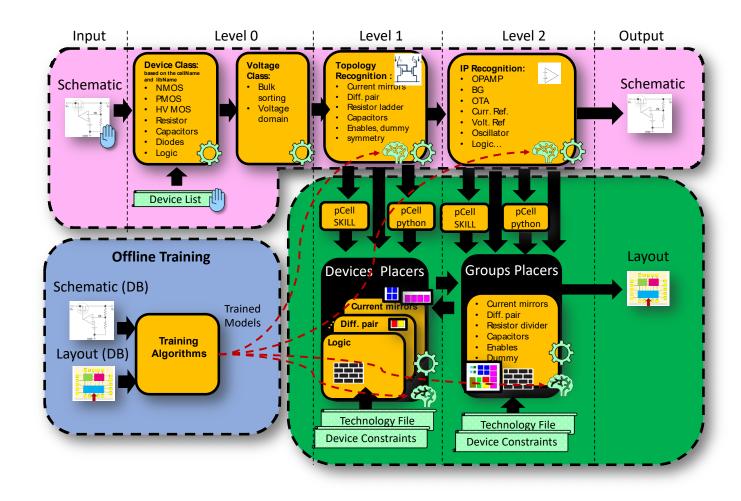
Project Website: ambeation.polito.it

Current Status and Results



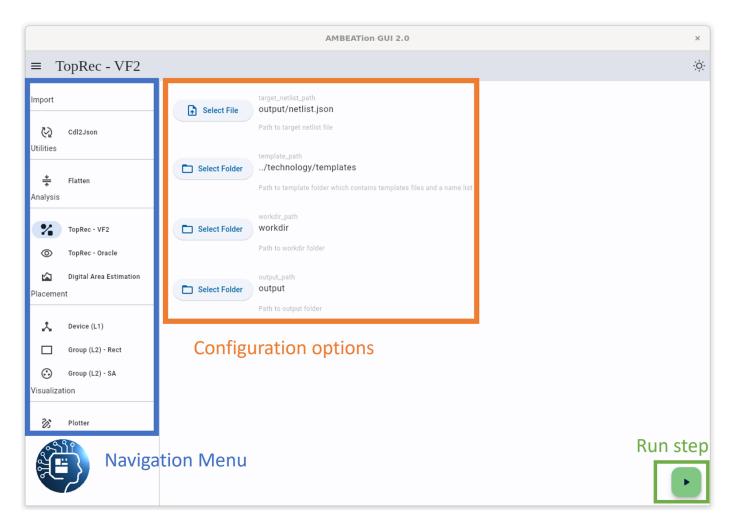
The AMBEATion Flow

- Mix of top-down (digital-like) and bottom-up philosophies
- Two sections: schematic and layout
 - Plus offline training for ML
 - Organized in levels (input, device, group, etc).
- Industrial I/O formats:
 - OA, CDL, GDS-II.



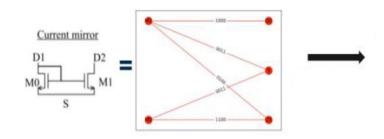
The AMBEATion Autoplacer Tool

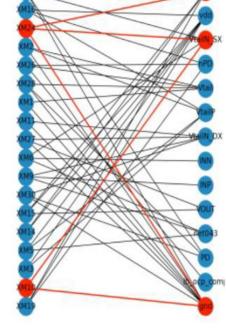
- Implementation of the flow shown in previous slides
- Entirely Python-based
- Modular interconnection of independent SW components using JSON-based internal DB files.
- Simple GUI and CLI



Zoom-in #1: Topology Recognition

- Find topologies (CM, DP, etc) in a bipartite graph representation of a netlist
- Classic approach: convert topology template to bipartite graph too, and apply subgraph isomorphism
 - e.g. VF2/VF3 algorithms

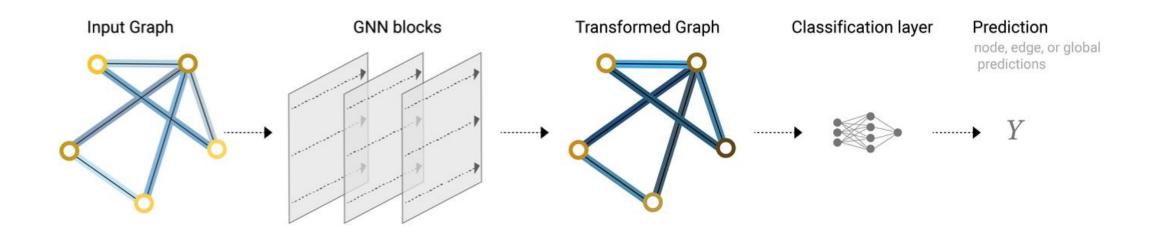




Main limitation: ex. time for large netlists (hours/template)

Zoom-in #1: Topology Recognition

 ML-based approach: apply Graph Neural Network (GNN) to target netlist and assign "probability of being part of a topology" to each node.



Faster but possibly inaccurate...

[source] https://distill.pub/2021/gnn-intro/

Zoom-in #1: Topology Recognition

- AMBEATion's Solution:
 - Hybrid GNN + VF2 approach
 - Use GNN to quickly identify cells belonging to a topology with "high-probability"
 - Filter-out false positives with deterministic algorithm (VF2)
- Example of results (on CMs):

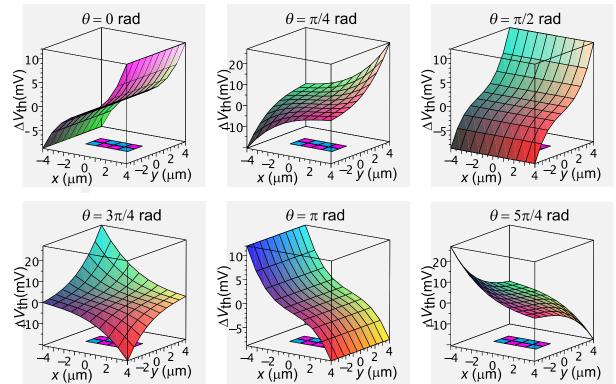
Metric	VF2	RGCN (with pre-processing)	RGCN + VF2
Accuracy	99.99%	99.48%	99.99%
Precision	96.41%	30.62%	96.62%
Recall	98.60%	99.48%	99.48%
Execution Time	10h 54min	60s	1min 57s

Zoom #2: Device Placer

 Novel Simulated Annealing (SA)-based placement algorithm to minimize systematic device mismatch (due to known parasytic effects).

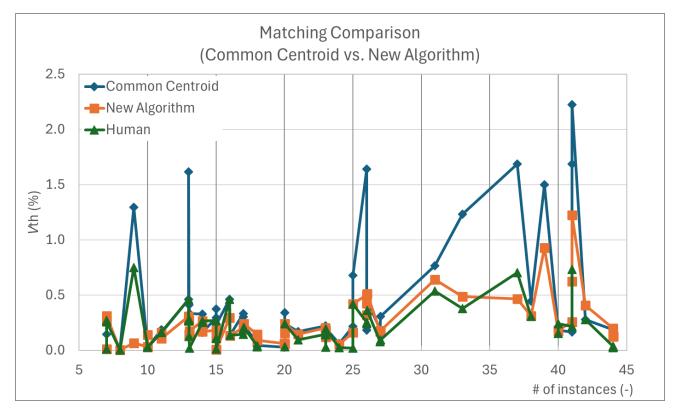
 Based on approximating the gradient of mismatch w.r.t. (x, y) involved devices distances as a polynomial

• Graphs: ΔV_{th} as an example of parameter influenced by mismatch

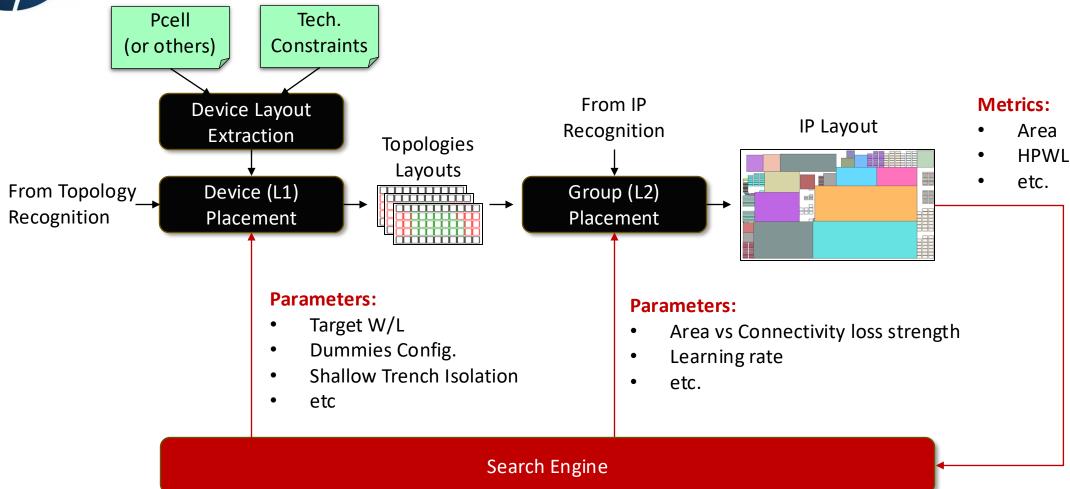


Zoom #2: Device Placer

 Results consistently better than previous algorithm (Common Centroid) and often comparable with human-made layouts in terms of matching.



Zoom-in #3: Device/Group Placement



Zoom-in #3: Device/Group Placement

Alternative Group Placer Implementations:

- Rectangle Placer (baseline)
- Simulated Annealing
- Non-Linear Programming

Topologies Layouts Device Placer Placer Parameters IP Layout Search Engine

Search Engine:

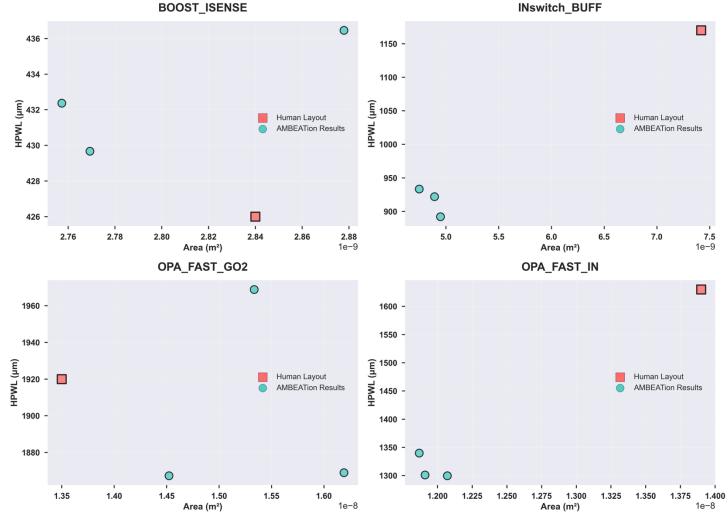
- Bayesian Optimization
- Reinforcement Learning (with NN-based reward model)

Zoom-in #3: Device/Group Placement

Area vs HPWL Comparison: Human Layout vs AMBEATion Results
BOOST_ISENSE
INswitch_BUI

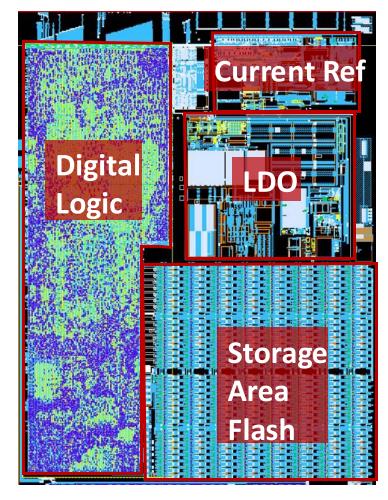
Results:

- Flow outputs are Pareto-optimal or dominating human-made layout (w.r.t. the considered metrics)
- These are still relatively small circuits (200/300 devices).



Zoom-in #4: Digital Placeability

- Analog-on-top AMS ICs can contain large digital blocks:
 - Placed with SotA EDA tools in dedicated layout regions
 - Often requires multiple iterations between analog and digital teams

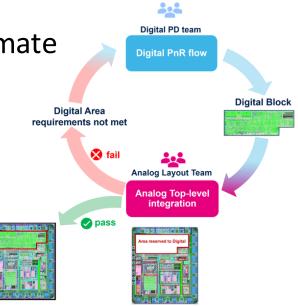


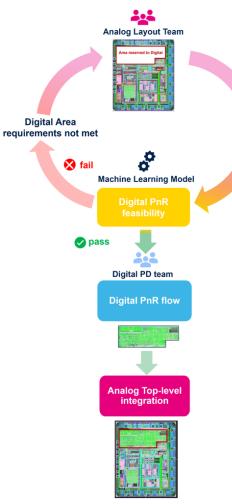
Zoom-in #4: Digital Placeability

 Proposed Approach: Use a ML model to estimate "placeability" of digital blocks from:

- Given layout area (and shape)
- Simple circuit + technology features

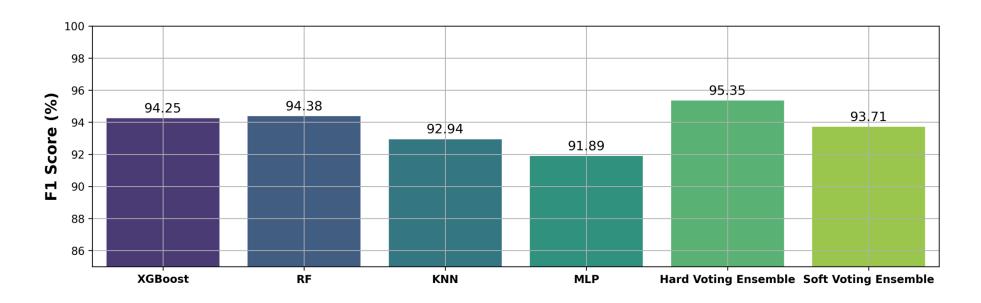
• Goal: avoid costly design iterations



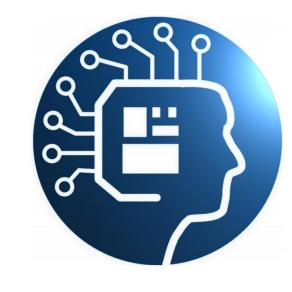


Zoom-in #4: Digital Placeability

- Results on 106 PnR runs from 47 designs, containing on average 42k gates, targeting BCD8sp STMicro technology
- Methodology details: per-design data split, custom feature extraction and data augmentation, etc.



Lessons Learned



- After approximately 4 years, reflecting on the key challenges encountered when trying to implement an Al-centric project in the AMS IC design domain...
- Three key lessons learned:
 - 1. Transitioning from a research prototype to a practically usable tool is difficult
 - 2. The "language barrier" can be hard to overcome.
 - 3. IC companies still lack a real "data-driven" culture

Disclaimers:

- Entirely personal view
- The industrial teams involved in AMBEATion did whatever they could to overcome these challenges

1. Transitioning from research prototype to "product"

- Well-known problem for AI-based projects in other domains, particularly critical in this one
- Issues of reliability/repeatablity of results, computational cost, data quality/quantity (see Lesson #3), scalability, technology independence, etc.
- But also, more practically:
 - Your design might achieve great metrics but still not "look good" to an analog designer (missing constraints, or just "artistic preference")
 - Compatibility with industrial EDA flows is key for adoption, and not easy to achieve.

2. The "language barrier" can be hard to overcome.

- Very few people have expertise in both AI/ML and IC design (especially analog)
- Experts in each of the two domains speak very different languages.
- Analog design choices can sometimes be difficult to formalize as algorithmic/quantitative. Maybe that's why AI could work?
- MSCA-RISE initiatives exist for this exact purpose!

3. IC companies still lack a real "data-driven" culture

- AI/ML algorithms are extremely data hungry
- High-quality augmented/synthetic data generation is non-trivial
- Collecting data with sufficient quantity and quality has proven extremely difficult.
 - Siloed projects/teams, no centralized data infrastructure
 - Data deemed unuseful often overwritten.
- Example: Digital Placeability ML model trained on 85 passing, 21 failing designs.
 - Data imbalance issue.

- Lots remain to be done to integrate ML techniques in EDA (especially for analog/AMS).
- AMBEATion's results, while preliminary, can hopefully motivate future research efforts in this area...
- ...and provide useful 'guidelines' for IC companies to develop their future AI-centered agenda (see later talks).

Questions?

Contact: daniele.jahier@polito.it

Selection of Project Publications:

- G. E. Aliffi et al., "AMBEATion: Analog Mixed-Signal Back-End Design Automation with Machine Learning and Artificial Intelligence Techniques," DATE 2024
- F. Daghero et al., "Machine Learning-based feasibility estimation of digital blocks in BCD technology," IEEE DTTIS 2024
- G. Faraone et al, "Machine Learning-based feasibility estimation of digital blocks for improved productivity in Analog-on-Top Back-End design flows", DAC 2024 (Industrial Session Poster).
- F. Daghero et al, ""Predicting Digital Layout Success in Analog-on-Top Designs using Machine Learning", IEEE NewCAS 2025 (in press).
- D. Barri et al, ""AMBEATion: New Algorithm for Generation IC Matched Structures with Respecting Linear and Non-linear Gradient Parameter Effects," IEEE AE 2024.

